Cho x, y là hai số thực thỏa mãn điều kiện x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức
Ta có:
x2 + 2y2 + 2xy + 7x + 7y + 10 = 0
Û (x2 + 2xy + y2) + 7x + 7y + y2 + 10 = 0
Û (x + y)2 + 7(x + y) + y2 + 10 = 0 (1)
Đặt S = x + y nên suy ra phương trình (1) trở thành
(1) Û S2 + 7S + y2 + 10 = 0
Dấu “=” xảy ra Û
Vậy
Û - 5 £ S £ -2
(2)
Với - 5 £ S £ -2
Û 1 £ S + 6 £ 4
Vậy suy ra GTNN của P = -13
Và GTLN của
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247