Cho ABC có ba góc nhọn (AB < AC), vẽ các đường cao BD và CE. a) Chứng minh ∆ABD ᔕ ∆ACE;

Câu hỏi :

Cho ABC có ba góc nhọn (AB < AC), vẽ các đường cao BD và CE.

a) Chứng minh ABD ACE;

b) Chứng minh ABC^+EDC^=1800;

c) Gọi M, N lần lượt là trung điểm của đoạn thẳng BD và CE. Vẽ AK là phân giác của MAN^ (K Î BC). Chứng minh KB.AC = KC.AB.

* Đáp án

* Hướng dẫn giải

Media VietJack

a) Xét ABD và ACE có:

BAC^ chung,

ADB^=AEC^=90°(gt)

Suy ra ABD ACE (g.g)

b) Vì ABD ACE (câu a)

ADAE=ABAC (các cặp cạnh tương ứng tỉ lệ)

Xét AED và ACB có

ADAE=ABAC ( chứng minh trên)

BAC^ chung,

Suy ra, AED ACB (c.g.c)

ADE^=ABC^ (hai góc tương ứng)

Mặc khác: ADE^+EDC^=180°(hai góc kề bù)

Do đó ADE^+EDC^=ABC^+EDC^=180°.

Vậy ABC^+EDC^=180°.

c) Vì ABD ACE (câu a)

ABAC=BDCE (tỉ số đồng dạng)

Mà M là trung điểm của BD, N là trung điểm của CE (giả thiết)

Nên ta có: BD = 2BM và CE = 2CN

ABAC=BDCE=2BM2CN=BMCN

Xét DABM và DACN có:

ABAC=BMCN (chứng minh trên),

ABM^=ACN^ (do cùng phụ với BAC^)

Þ DABM DACN (c.g.c)

BAM^=CAN^ (hai góc tương ứng)

Lại có AK là tia phân giác của MAN^ (giả thiết)

MAK^=NAK^ (tính chất tia phân giác của một góc)

Do đó: BAM^+MAK^=CAN^+NAK^

Hay BAK^=KAC^ 

Þ AK là tia phân giác của BAC^

Theo tính chất tia phân giác của tam giác ta có:

ABAC=KBKC 

Þ KB.AC = KC.AB (điều phải chứng minh).

Vậy KB.AC = KC.AB.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra cuối kì 2 Toán 8 có đáp án ( Mới nhất) !!

Số câu hỏi: 264

Copyright © 2021 HOCTAP247