d) Tìm vị trí của điểm E trên cạnh AB để tam giác HEF có diện tích nhỏ nhất.

Câu hỏi :

d) Tìm vị trí của điểm E trên cạnh AB để tam giác HEF có diện tích nhỏ nhất.

* Đáp án

* Hướng dẫn giải

d) Ta có:

+) ∆EHA ∆FHC (cmt)

EHFH=HAHC

+) ∆HAC ∆ABC (cmt)

ABAC=HAHC

Suy ra EHFH=ABAC=HAHC

HEAB=HFAC

+) Xét DEHF và DBAC có:

HEAB=HFACcmt     EHF^=BAC^=90°ΔEHFΔBACc.g.c

Khi đó tỉ lệ diện tích của hai tam giác DEHF và DBAC cũng bằng bình phương tỉ lệ của hai cạnh HE và AB

SEHFSBAC=HEAB2SEHF=SBAC.HEAB2

Vì SABC và AB không đổi nên SEHF nhỏ nhất khi HE nhỏ nhất

Do đó EH ^ AB.

Vậy SEHF nhỏ nhất khi E là hình chiếu của H trên AB.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra cuối kì 2 Toán 8 có đáp án ( Mới nhất) !!

Số câu hỏi: 264

Copyright © 2021 HOCTAP247