Cho ABC có ba góc nhọn (AB < AC) có ba đường cao AE, BD, CF cắt nhau tại H. a) Chứng minh: tam giác ABD đồng dạng với tam giác ACF.

Câu hỏi :

Cho DABC có ba góc nhọn (AB < AC) có ba đường cao AE, BD, CF cắt nhau tại H.

a) Chứng minh: DABD đồng dạng với DACF.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Cho ABC có ba góc nhọn (AB < AC) có ba đường cao AE, BD, CF cắt nhau tại H. a) Chứng minh: tam giác ABD đồng dạng với tam giác ACF. (ảnh 1)

H là giao của 3 đường cao AE, BD, CF nên H là trực tâm của tam giác ABC

a) Xét hai tam giác DABD và DACF có:

BAD^=CAF^A^chungADB^=AFC^=90°    ΔABDΔACFg.g

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra cuối kì 2 Toán 8 có đáp án ( Mới nhất) !!

Số câu hỏi: 264

Copyright © 2021 HOCTAP247