Giả sử AC là đường chéo lớn của hình bình hành ABCD. Từ C, vẽ

Câu hỏi :

Giả sử AC là đường chéo lớn của hình bình hành ABCD. Từ C, vẽ đường thẳng vuông góc CE với đường thẳng AB, đường vuông góc CF với đường thẳng AD (E, F thuộc phần kéo dài của các cạnh AB và AD), Chứng minh rằng AB.AE + AD.AF = AC2

* Đáp án

* Hướng dẫn giải

Dựng BG ⊥ AC.

Xét ΔBGA và ΔCEA, ta có:

(BGA) = (CEA) = 900

A chung

BGA đồng dạng CEA(g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

AB.AE = AC.AG (1)

Xét BGC và CFA, ta có:

(BGC) = (CFA) = 900

(BCG) = (CAF) (so le trong vì AD //BC)

BGC đồng dạng CFA (g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ⇒ BC.AF = AC.CG

Mà BC = AD (tính chất hình bình hành)

Suy ra: AD.AF = AC.CG (2)

Cộng từng vế đẳng thức (1) và (2) ta có:

AB.AE + AD.AF = AC.AG + AC.CG

AB.AE + AD.AF= AC(AG + CG)

Mà AG + CG = AC nên AB.AE + AD.AF = AC2

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải Sách Bài Tập Toán 8 Tập 2 !!

Số câu hỏi: 715

Copyright © 2021 HOCTAP247