Cho tam giác ABC, các đường trung tuyến BD, CE cắt nhau ở G. Gọi H

Câu hỏi :

Cho tam giác ABC, các đường trung tuyến BD, CE cắt nhau ở G. Gọi H là trung điểm của GB, K là trung điểm của GC. Chứng minh rằng tứ giác DEHK là hình bình hành.

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tam giác ABC có hai đường trung tuyến BD và CE cắt nhau tại G nên G là trọng tâm tam giác ABC.

Ta có: GD = 1/2 GB (tính chất đường trung tuyến của tam giác)

GH = 1/2 GB (gt)

Suy ra: GD = GH

GE = 1/2 GC (tính chất đường trung tuyến của tam giác)

GK = 1/2 GC

Suy ra GE = GK

Tứ giác DEHK là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải Sách Bài Tập Toán 8 Tập 1 !!

Số câu hỏi: 794

Copyright © 2021 HOCTAP247