Cho hình bình hành ABCD có AB=2AD. Gọi E và F theo thứ tự là trung

Câu hỏi :

Cho hình bình hành ABCD có AB=2AD. Gọi E và F theo thứ tự là trung điểm của AB và CD. Hình bình hành ABCD nói trên có thêm điều kiện gì thì EMFN là hình vuông.

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: Hình chữ nhật EMFN là hình thoi ⇒ ME = MF

ME = 1/2 DE (tính chất hình thoi)

MF = 1/2 AF (tính chất hình thoi)

Suy ra: DE = AF

⇒ Tứ giác AEFD là hình vuông (vì hình thoi có 2 đường chéo bằng nhau)

A = 900 ⇒ Hình bình hành ABCD là hình chữ nhật.

Ngược lại: ABCD là hình chữ nhật ⇒ A = 900

Hình thoi AEFD có A = 900 nên AEFD là hình vuông

⇒ AF = DE ⇒ ME = MF (tính chất hình vuông)

Hình chữ nhật EMFN là hình vuông (vì có 2 cạnh kề bằng nhau)

Vậy hình chữ nhật EMFN là hình vuông nếu ABCD là hình chữ nhật có AB = 2AD.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải Sách Bài Tập Toán 8 Tập 1 !!

Số câu hỏi: 794

Copyright © 2021 HOCTAP247