Cho hình bình hành ABCD có E, F theo thứ tự là trung điểm của AB

Câu hỏi :

Cho hình bình hành ABCD có E, F theo thứ tự là trung điểm của AB, CD. Chứng minh rằng các đường thẳng AC, BD, EF cùng cắt nhau tại một điểm.

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm của AC và BD.

Ta có: OB = OD (tính chất hình bình hành)

Tứ giác DEBF là hình bình hành nên EF và BD cắt nhau tại trung điểm của mỗi đường.

Suy ra: EF đi qua trung điểm O của BD.

Vậy AC, BD và EF cắt nhau tại O trung điểm của mỗi đoạn.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải Sách Bài Tập Toán 8 Tập 1 !!

Số câu hỏi: 794

Copyright © 2021 HOCTAP247