Cho hình vuông ABCD. Gọi E, F theo thứ tự là trung điểm của AB, BC

Câu hỏi :

Cho hình vuông ABCD. Gọi E, F theo thứ tự là trung điểm của AB, BC. Gọi M là giao điểm của CE và DF. Chứng minh rằng AM = AD.

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi K là trung điểm của DC, AK cắt DF tại N.

* Xét tứ giác AKCE, ta có: AB // CD hay AE // CK

AE = 1/2 AB (gt)

CK = 1/2 CD (theo cách vẽ)

AB = CD ( Vì ABCD là hình vuông)

Suy ra: AE = CK nên tứ giác AKCE là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau) ⇒ AK// CE

DF ⊥ CE (chứng minh trên) ⇒ AK ⊥ DF hay AN ⊥ DM

* Trong DMC, ta có: DK = KC và KN // CM

Nên DN = MN (tính chất đường trung bình của tam giác)

Tam giác ADM có AN là đường cao đồng thời là đường trung tuyến

Suy ra: ADM cân tại A

Vậy AD = AM.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải Sách Bài Tập Toán 8 Tập 1 !!

Số câu hỏi: 794

Copyright © 2021 HOCTAP247