Xét ADE và BCE , ta có:
ED = EC (vì AEDC cân tại E)
(ADE) = (BCE) =
AD = BC (gt)
Suy ra: ADE = BCE (c.g.c)
⇒ AE = BE (1)
* Trong ADE, ta có:
(AFD) = – ((FAD) + (FDA) ) = – ( + ) =
(AFD) + (DFE) + (AFE) =
⇒ (AFE) = - ((AFD) + (DFE) ) = – ( + ) =
* Xét AFD và AFE, ta có: AF cạnh chung
(AFD) = (AFE) =
DE = EF (vì DFE đều)
Suy ra: AFD = AFE (c.g.c) ⇒ AE = AD
Mà AD = AB (gt)
Suy ra: AE = AB (2)
Từ (1) và (2) suy ra: AE = AB = BE
Vậy AEB đều.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247