Chứng minh rằng trung điểm bốn cạnh của một hình chữ nhật là một hình thoi

Câu hỏi :

Chứng minh rằng trung điểm bốn cạnh của một hình chữ nhật là một hình thoi.

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA của hình chữ nhật ABCD.

Kẻ đường chéo AC, BD

* Trong ABC, ta có:

E là trung điểm của AB

F là trung điểm của BC

Nên EF là đường trung bình của ABC.

⇒ EF // AC và EF = 1/2 AC (t/chất đường trung bình của tam giác) (1)

Trong ADC, ta có: H là trung điểm của AD

G là trung điểm của DC

Nên HG là đường trung bình của tam giác ADC.

⇒ HG // AC và HG = 1/2 AC (t/chất đường trung bình của tam giác) (2)

Từ (1) và (2) suy ra: EF // HG và EF = HG

Suy ra tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

Xét AEH và DGH, ta có: AH = HD (gt)

EAH và GDH = 90°

AE = DG (vì AB = CD)

Suy ra: AEH = DGH (c.g.c) ⇒ HE = HG

Vậy hình bình hành EFGH là hình thoi (hình bình hành có 2 cạnh kề bằng nhau).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải Sách Bài Tập Toán 8 Tập 1 !!

Số câu hỏi: 794

Copyright © 2021 HOCTAP247