Cho hình bình hành ABCD, các đường chéo cắt nhau tại O. Gọi E,F,G,H

Câu hỏi :

Cho hình bình hành ABCD, các đường chéo cắt nhau tại O. Gọi E,F,G,H theo thứ tự là giao điểm của các đường phân giác của tam giác AOB, BOC, COD, DOA. Chứng minh rằng EFGH là hình thoi.

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: (AOB) = (COD) (đối đỉnh)

(EOB ) = 1/2 (AOB) (gt)

(COG) = 1/2 (COD) (gt)

Suy ra: (EOB ) = (COG)

(EOB) +(BOC) +(COG) = 2 (EOB) + (BOC)

Mà (AOB ) + (BOC) = 1800 ( kề bù).Hay 2 (EOB) + (BOC ) = 1800

Suy ra: E,O,G thẳng hàng

Ta lại có: (BOC) = (AOD ) ( đối đỉnh)

(HOD) = 1/2 (AOD) (gt)

(FOC) = 1/2 (BOC) (gt)

Suy ra: (HOD) = (FOC)

(HOD) + (COD ) + (FOC) = 2 (HOD) + (COD)

Mà (AOD) + (COD) = 1800 ( kề bù). Hay 2 (HOD) + (COD) = 1800

Suy ra: H, O, F thẳng hàng

(ADO) = (CBO) ( so le trong)

(HDO) = (FBO) ( chứng minh trên)

OD = OB ( t/chất hình bình hành)

(HOD) = (FOB ) ( đối đỉnh)

Do đó: BFO = DHO (g.c.g)

⇒ OF = OH

(OAB) = (OCD) ( so le trong)

(OAE) = 1/2 (OAB ) (gt)

(OCG) = 1/2 (OCD) (gt)

Suy ra: (OAE) = (OCG)

Xét OAE và OCG,ta có :

(OAE) = (OCG) ( chứng mình trên)

OA = OC ( t/chất hình bình hành)

(EOA) = (GOC) ( đối đỉnh)

Do đó: OAE= OCG (g.c.g) ⇒ OE = OG

Suy ra tứ giác EFGH là hình bình hành ( vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)

OE ⊥ OF (tính chất tia phân giác của hai góc kề bù) hay EG ⊥ FH

Vậy tứ giác EFGH là hình thoi

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải Sách Bài Tập Toán 8 Tập 1 !!

Số câu hỏi: 794

Copyright © 2021 HOCTAP247