Tam giác ABC có: AB = 4cm, AC = 5cm, BC = 6cm. Các đường phân giác BD và CE cắt nhau ở I.

Câu hỏi :

Cho tam giác ABC có: AB = 4cm, AC = 5cm, BC = 6cm. Các đường phân giác BD và CE cắt nhau ở I. Tỉ số diện tích các tam giác DIE và ABC là:

A. 4/55 

B. 1/8 

C. 1/10 

D. 2/45 

* Đáp án

A

* Hướng dẫn giải

Ta có: \( \frac{{AD}}{{AB}} = \frac{{DC}}{{BC}}\) (t/c)

\( \Rightarrow \frac{{AD}}{4} = \frac{{DC}}{6} = \frac{{AD + DC}}{{4 + 6}} = \frac{5}{{10}} = \frac{1}{2} \Rightarrow AD = 4.\frac{1}{2} = 2,DC = 6.\frac{1}{2} = 3\)

Suy ra \( \frac{{DI}}{{IB}} = \frac{{DC}}{{CB}} = \frac{3}{6} = \frac{1}{2} \Rightarrow \frac{{DI}}{{DB}} = \frac{1}{3}\)

\( \frac{{BE}}{{EA}} = \frac{{BC}}{{AC}} = \frac{6}{5} \Rightarrow \frac{{BE}}{{BA}} = \frac{6}{{11}};\frac{{AD}}{{DC}} = \frac{2}{3} \Rightarrow \frac{{AD}}{{AC}} = \frac{2}{5}\)

Suy ra 

\( {S_{DIE}} = \frac{1}{3}{S_{BDE}}, \Rightarrow {S_{DIE}} = \frac{1}{3}.\frac{6}{{11}}.\frac{2}{5} = \frac{4}{{55}}{S_{ABC}}\)

Vậy \( \frac{{{S_{DIE}}}}{{{S_{ABC}}}} = \frac{4}{{55}}\)

Copyright © 2021 HOCTAP247