A. \(\frac{a^{2}+a+1}{2 \cdot(a-1) \cdot\left(a^{2}+a+1\right)};\frac{2 \cdot(a-1) \cdot(a+1)}{2(a-1) \cdot\left(a^{2}+a+1\right)};\frac{2 \cdot\left(a^{3}+2 a\right)}{2 \cdot(a-1) \cdot\left(a^{2}+a+1\right)}\)
B. \(\frac{a^{2}+a+1}{(a-1)\cdot\left(a^{2}+a+1\right)};\frac{2 \cdot(a-1) \cdot(a+1)}{(a-1) \cdot\left(a^{2}+a+1\right)};\frac{2 \cdot\left(a^{3}+2 a\right)}{\cdot(a-1) \cdot\left(a^{2}+a+1\right)}\)
C. \(\frac{a^{2}+a+1}{2 \cdot(a-1) \cdot\left(a^{2}+a+1\right)};\frac{2 \cdot(a-1) \cdot(a+1)}{(a-1) \cdot\left(a^{2}+a+1\right)};\frac{2 \cdot\left(a^{3}+2 a\right)}{ \cdot(a-1) \cdot\left(a^{2}+a+1\right)}\)
D. \(\frac{a^{2}+a+1}{2 \cdot(a-1) \cdot\left(a^{2}+a+1\right)};\frac{2(a+1)}{(a-1) \cdot\left(a^{2}+a+1\right)};\frac{2 \cdot\left(a^{3}+2 a\right)}{2 \cdot(a-1) \cdot\left(a^{2}+a+1\right)}\)
A
\(\begin{aligned} &\text { MTC }: 2 \cdot(a-1) \cdot\left(a^{2}+a+1\right) \\ &\frac{1}{2 a-2}=\frac{1}{2 \cdot(a-1)}=\frac{a^{2}+a+1}{2 \cdot(a-1) \cdot\left(a^{2}+a+1\right)} \\ &\frac{a+1}{a^{2}+a+1}=\frac{2 \cdot(a-1) \cdot(a+1)}{2 \cdot(a-1) \cdot\left(a^{2}+a+1\right)} \\ &\frac{a^{3}+2 a}{a^{3}-1}=\frac{2 \cdot\left(a^{3}+2 a\right)}{2 \cdot(a-1) \cdot\left(a^{2}+a+1\right)} \end{aligned}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247