Cho biết phân thức \(\dfrac{{2{x^2} - 2}}{{{x^3} - {x^2} - 4x + 4}}\). Tìm giá trị của \(x\) để giá trị của phân thức đã cho bằng \(0.\)

Câu hỏi :

Cho phân thức \(\dfrac{{2{x^2} - 2}}{{{x^3} - {x^2} - 4x + 4}}\). Tìm giá trị của \(x\) để giá trị của phân thức đã cho bằng \(0.\)

A. x = 1

B. x = 2

C. x = -1

D. x = -2

* Đáp án

C

* Hướng dẫn giải

\(\dfrac{{2{x^2} - 2}}{{{x^3} - {x^2} - 4x + 4}} \)

\(= \dfrac{{2\left( {{x^2} - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x + 2} \right)}}\)

\( = \dfrac{{2\left( {x - 1} \right)\left( {x + 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x + 2} \right)}} \)

\(= \dfrac{{2\left( {x + 1} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\)

Phân thức \(\dfrac{{2{x^2} - 2}}{{{x^3} - {x^2} - 4x + 4}}\) có giá trị bằng \(0\) thì phân thức \(\dfrac{{2\left( {x + 1} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\) cũng có giá trị bằng \(0\), nên ta có:

\(\begin{array}{l}\dfrac{{2\left( {x + 1} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = 0\\ \Rightarrow 2\left( {x + 1} \right) = 0\\ \Rightarrow x + 1 = 0\\ \Rightarrow x =  - 1\,\,\text{(thỏa mãn ĐKXĐ)}\end{array}\)

Vậy \(x =  - 1\)  thì phân thức đã cho có giá trị bằng \(0.\)

Copyright © 2021 HOCTAP247