Hãy tìm giá trị của \(x\) để giá trị của phân thức \(\dfrac{{{x^2} - 10x + 25}}{{{x^2} - 5x}}\) bằng \(0\).

Câu hỏi :

Tìm giá trị của \(x\) để giá trị của phân thức \(\dfrac{{{x^2} - 10x + 25}}{{{x^2} - 5x}}\) bằng \(0\).

A. 1

B. 2

C. 3

D. Không tồn tại x

* Đáp án

D

* Hướng dẫn giải

- Điều kiện: \({x^2} - 5x = x\left( {x - 5} \right) \ne 0\) khi \(x \ne 5\) và \( x - 5 \ne 0\) hay \(x \ne 0\) và \( x \ne 5\).

- Rút gọn phân thức:

\(\eqalign{
& {{{x^2} - 10x + 25} \over {{x^2} - 5x}} \cr 
& = {{{x^2} - 2.x.5 + {5^2}} \over {x\left( {x - 5} \right)}} \cr 
&= {{{{\left( {x - 5} \right)}^2}} \over {x\left( {x - 5} \right)}} \cr 
&= {{x - 5} \over x} \cr} \)

Nếu phân thức đã cho có giá trị bằng \(0\) thì phân thức rút gọn cũng có giá trị bằng \(0\); tức là \(  x - 5 = 0.\) Suy ra \(x=5\). Nhưng theo điều kiện thì \(x\ne5\)

Vậy không có giá trị nào của \(x\) để giá trị của phân thức đã cho bằng \(0\).

Copyright © 2021 HOCTAP247