Rút gọn phân thức sau ​\(\begin{array}{l} D = \frac{{{x^2} + xz - xy - yz}}{{{x^2} + xz + xy + yz}}\end{array}\) ta được

Câu hỏi :

Rút gọn phân thức \(\begin{array}{l} D = \frac{{{x^2} + xz - xy - yz}}{{{x^2} + xz + xy + yz}}\end{array}\) ta được 

A.  \(D= \frac{{x - y}}{{x + y}}\)

B.  \(D= \frac{{x - y}}{{x }}\)

C.  \(D= \frac{{3}}{{x + y}}\)

D.  \(D= \frac{{2x - y}}{{x + y}}\)

* Đáp án

A

* Hướng dẫn giải

 \(\begin{array}{l} D = \frac{{{x^2} + xz - xy - yz}}{{{x^2} + xz + xy + yz}}\\ =\frac{{(x + z)(x - y)}}{{(x + z)(x + y)}} = \frac{{x - y}}{{x + y}} \end{array}\)

Copyright © 2021 HOCTAP247