Em hãy tìm các giá trị của \(a\) sao cho biểu thức \(\dfrac{{3a - 1}}{{3a + 1}} + \dfrac{{a - 3}}{{a + 3}}\) có giá trị bằng \(2\).

Câu hỏi :

Tìm các giá trị của \(a\) sao cho biểu thức \(\dfrac{{3a - 1}}{{3a + 1}} + \dfrac{{a - 3}}{{a + 3}}\) có giá trị bằng \(2\).

A. \(a =   \dfrac{5}{3}\)

B. \(a =  - \dfrac{5}{3}\)

C. \(a =  \dfrac{3}{5}\)

D. \(a =  - \dfrac{3}{5}\)

* Đáp án

D

* Hướng dẫn giải

Bài toán quy về việc giải phương trình ẩn \(a\):

\(\dfrac{{3a - 1}}{{3a + 1}} + \dfrac{{a - 3}}{{a + 3}} = 2\);

Điều kiện xác định: \(3a+1\ne0;a+3\ne0\), tức là \(a \ne  - \dfrac{1}{3},a \ne  - 3\).

Quy đồng mẫu thức hai vế:

\(\dfrac{{\left( {3a - 1} \right)\left( {a + 3} \right)}}{{\left( {3a + 1} \right)\left( {a + 3} \right)}} + \dfrac{{\left( {a - 3} \right)\left( {3a + 1} \right)}}{{\left( {3a + 1} \right)\left( {a + 3} \right)}} \)\(\,= \dfrac{{2\left( {3a + 1} \right)\left( {a + 3} \right)}}{{\left( {3a + 1} \right)\left( {a + 3} \right)}}\)

Khử mẫu thức, ta được phương trình: 

\(\left( {3a - 1} \right)\left( {a + 3} \right) + \left( {a - 3} \right)\left( {3a + 1} \right) \)\(= 2\left( {3a + 1} \right)\left( {a + 3} \right)\)

Giải phương trình nhận được:

⇔ \(3{a^2} + 9a - a - 3 + 3{a^2} - 9a + a - 3 \)\(= 6{a^2} + 18a + 2a + 6\)

\( \Leftrightarrow  - 20a = 12\)

⇔ \(a =   12:(-20)\)

⇔ \(a =  - \dfrac{3}{5}\)

Kiểm tra kết quả: Giá trị \(a =  - \dfrac{3}{5}\) thỏa mãn ĐKXĐ.

Trả lời: Vậy \(a =  - \dfrac{3}{5}\)  thì biểu thức \(\dfrac{{3a - 1}}{{3a + 1}} + \dfrac{{a - 3}}{{a + 3}}\) có giá trị bằng \(2\). 

Copyright © 2021 HOCTAP247