a. \(y = {1 \over {\sqrt {x + 2} }}\)
b. \(y = {1 \over x}\)
Bài 2. Cho hàm số \(y = f\left( x \right) = \sqrt {1 - x} .\) Tính : \(f\left( { - 1} \right);\,f\left( { - 3} \right);\,f\left( 3 \right)\)
Bài 3. Vẽ đồ thị hàm số \(y=-x\)
Bài 1. a. \({1 \over {\sqrt {x + 2} }}\) xác định \( \Leftrightarrow \left\{ {\matrix{ {x + 2 \ge 0} \cr {x + 2 \ne 0} \cr } } \right. \)
\(\Leftrightarrow x + 2 > 0 \Leftrightarrow x > - 2\)
b. \({1 \over x}\) xác định \( \Leftrightarrow x \ne 0\)
Bài 2. \(\sqrt {1 - x} \) xác định \( \Leftrightarrow 1 - x \ge 0 \Leftrightarrow x \le 1\)
Vậy \(f(3)\) không tồn tại.
Ta có: \(\eqalign{ & f\left( { - 1} \right) = \sqrt {1 - \left( { - 1} \right)} = \sqrt 2 \cr & f\left( { - 3} \right) = \sqrt {1 - \left( { - 3} \right)} = \sqrt 4 = 2 \cr} \)
Bài 3. Bảng giá trị :
x
0 1
y
0 -1
x
0 1
y
0 -1
Đồ thị của hàm số \(y = -x\) là đường thẳng qua hai điểm \(O(0; 0)\) và \(A(1; -1)\).
Copyright © 2021 HOCTAP247