Hai vòi nước cùng chảy vào một bể nước cạn (không có nước) thì sau \(4\dfrac{4}{5}\) giờ đầy bể. Nếu lúc đầu chỉ mở vòi thứ nhất và \(9\) giờ sau mới mở thêm vòi thứ hai thì sau \(\dfrac{6}{5}\) giờ nữa mới đầy bể. Hỏi nếu ngay từ đầu chỉ mở vòi thứ hai thì sau bao lâu mới đầy bể ?
B1: Chọn ẩn, đặt điều kiện thích hợp.
Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
Lập hệ phương trình biểu thị sự tương quan giữa các đại lượng.
B2: Giải hệ phương trình.
B3: Kiểm tra trong các nghiệm tìm được nghiệm nào thỏa mãn điều kiện, nghiệm nào không thỏa mãn, rồi trả lời
Chú ý: +) Quy ước chảy đầy bể là \(1\).
+) Một vòi chảy đầy bể trong \(x\) giờ thì trong \(1\) giờ chảy được \(\dfrac{1}{x}\) bể.
Lời giải chi tiết
Gọi \(x\) (giờ) là thời gian để vòi thứ nhất chảy đầy bể \((x > 0)\).
\(y\) (giờ) là thời gian để vòi thứ hai chảy đầy bể \((y > 0)\).
Trong \(1\) giờ vòi thứ nhất chảy được \(\dfrac{1}{x}\) bể, vòi thứ hai chảy được \(\dfrac{1}{y}\) bể.
Suy ra trong \(1\) giờ, cả hai vòi chảy được: \( \dfrac{1}{x} + \dfrac{1}{y}\) (bể)
Theo đề bài, cả hai vòi cùng chảy đầy bể sau \(4\dfrac{4}{5}\) giờ = \(\dfrac{24}{5}\) giờ nên trong \(1\) giờ cả hai vòi cùng chảy được \(\dfrac{5}{24}\) bể.
Ta có phương trình: \(\dfrac{1}{x}+ \dfrac{1}{y}= \dfrac{5}{24}\) (1)
Trong \(9\) giờ, vòi thứ nhất chảy được \(9.\dfrac{1}{x}\) bể.
Trong \(\dfrac{6}{5}\) giờ cả hai vòi chảy được \(\dfrac{6}{5}. {\left( \dfrac{1}{x}+ \dfrac{1}{y}\right)}\) bể.
Theo đề bài, vòi thứ nhất chảy \(9h\) sau đó mở thêm vòi thứ hai thì sau \(\dfrac{6}{5}\) giờ đầy bể nên ta có:
\(9. \dfrac{1}{x}+\dfrac{6}{5}. {\left( \dfrac{1}{x}+ \dfrac{1}{y}\right)}=1\)
\( \Leftrightarrow 9. \dfrac{1}{x}+\dfrac{6}{5}. \dfrac{1}{x}+ \dfrac{6}{5}.\dfrac{1}{y}=1\) \( \Leftrightarrow {\left(9+\dfrac{6}{5}\right)} \dfrac{1}{x}+ \dfrac{6}{5}.\dfrac{1}{y}=1\)
\( \Leftrightarrow \dfrac{51}{5}.\dfrac{1}{x}+ \dfrac{6}{5}.\dfrac{1}{y}=1\) \( \Leftrightarrow 51. \dfrac{1}{x}+ 6. \dfrac{1}{y}=5\) (2)
Từ (1) và (2) ta có hệ:
\(\left\{\begin{matrix} \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{5}{24} & & \\ 51. \dfrac{1}{x}+ 6. \dfrac{1}{y}=5 & & \end{matrix}\right.\)
Đặt \(\left\{\begin{matrix} \dfrac{1}{x}=a & & \\ \dfrac{1}{y}=b & & \end{matrix}\right.\) với \(a > 0,\ b> 0.\)
Hệ đã cho trở thành:
\(\left\{\begin{matrix} a + b = \dfrac{5}{24} & & \\ 51a+ 6b=5 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 24a + 24b =5 & & \\ 51a+ 6b=5 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 24a + 24b =5 & & \\ 204a+ 24b=20 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 24a + 24b =5 & & \\ 180a=15 & & \end{matrix}\right.\)
\( \Leftrightarrow \left\{\begin{matrix}24b =5-24a & & \\ a=\dfrac{15}{180}=\dfrac{1}{12} & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix}24b =5-24.\dfrac{1}{12} & & \\ a=\dfrac{1}{12} & & \end{matrix}\right.\)
\( \Leftrightarrow \left\{\begin{matrix}24b =3 & & \\ a=\dfrac{1}{12} & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix}b =\dfrac{3}{24} & & \\ a=\dfrac{1}{12} & & \end{matrix}\right.\)
\( \Leftrightarrow \left\{\begin{matrix}b =\dfrac{1}{8} & & \\ a=\dfrac{1}{12} & & \end{matrix} (thỏa\ mãn)\right.\)
Do đó \(\left\{\begin{matrix} \dfrac{1}{x}=\dfrac{1}{12} & & \\ \dfrac{1}{y}=\dfrac{1}{8} & & \end{matrix}\right.\) \( \Leftrightarrow \left\{\begin{matrix} x =12 & & \\ y=8 & & \end{matrix} (thỏa\ mãn)\right.\)
Vậy nếu từ đầu chỉ mở vòi hai thì sau \(8\) giờ bể sẽ đầy.
Copyright © 2021 HOCTAP247