Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Giải các phương trình

a) \(|4x-9| = 3 -2x\)

b) \(|2x+1| = |3x+5|\)

Hướng dẫn giải

Dạng 1:  \(\left| {f\left( x \right)} \right| = g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}g\left( x \right) > 0\\{f^2}\left( x \right) = {g^2}\left( x \right)\end{array} \right..\)

Dạng 2:  \(\left| {f\left( x \right)} \right| = \left| {g\left( x \right)} \right| \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = g\left( x \right)\\f\left( x \right) = - g\left( x \right)\end{array} \right..\)

Lời giải chi tiết

a) ĐKXĐ: \(3 - 2x ≥ 0 ⇔ x ≤{3 \over 2}\)

Bình phương hai vế ta được:

\((4x – 9)^2= (3-2x)^2\)

\( \Leftrightarrow {(4x - 9)^2} - {(3 - 2x)^2} = 0\)

\(⇔ (4x – 9 + 3 -2x)(4x – 9 – 3 + 2x) = 0\)

\(\eqalign{
& \Leftrightarrow (2x - 6)(6x - 12) = 0 \cr
& \Leftrightarrow \left[ \matrix{
x = 3\text{ ( loại )} \hfill \cr
x = 2 \text{ ( loại )}\hfill \cr} \right. \cr} \)

Vậy phương trình vô nghiệm.

b) Bình phương hai vế ta được

\(\Leftrightarrow \left[ \matrix{
2x + 1 = 3x + 5 \hfill \cr
2x + 1 = - 3x - 5 \hfill \cr} \right.\\ \Leftrightarrow \left[ \matrix{
x = - 4 \hfill \cr
5x = - 6 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = - 4 \hfill \cr
x = -\frac{6}{5} \hfill \cr} \right.\)

Vậy phương trình có tập nghiệm: \(S = \left\{ { - 4;\; - \frac{6}{5}} \right\}.\)

Copyright © 2021 HOCTAP247