Giải các hệ phương trình
a) \(\left\{ \matrix{- 2x + 5y = 9 \hfill \cr 4x + 2y = 11 \hfill \cr} \right.\)
b)\(\left\{ \matrix{3x + 4y = 12 \hfill \cr 5x - 2y = 7 \hfill \cr} \right.\)
c)\(\left\{ \matrix{2x - 3y = 5 \hfill \cr 3x + 2y = 8 \hfill \cr} \right.\)
d) \(\left\{ \matrix{5x + 3y = 15 \hfill \cr 4x - 5y = 6 \hfill \cr} \right.\)
Giải hệ phương trình bằng phương pháp thế hoặc phương pháp cộng đại số.
Lời giải chi tiết
a) Nhân phương trình thứ nhất với \(2\), cộng vào phương trình thứ hai ta được
\(\begin{array}{l}
\left\{ \begin{array}{l}
- 2x + 5y = 9\\
4x + 2y = 11
\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}
- 4x + 10y = 18\\
4x + 2y = 11
\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}
12y = 29\\
4x + 2y = 11
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = \frac{{29}}{{12}}\\
4x + 2.\frac{{29}}{{12}} = 11
\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}
y = \frac{{29}}{{12}}\\
x = 11 - \frac{{29}}{6}
\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}
x = \frac{{37}}{{24}}\\
y = \frac{{29}}{{12}}
\end{array} \right..
\end{array}\)
Vậy hệ phương trình có nghiệm \(\left( {x;\;y} \right) = \left( {\frac{{37}}{{24}};\;\frac{{29}}{{12}}} \right). \)
b) Nhân phương trình thứ hai với \(2\) rồi cộng vào phương trình thứ nhất:
\(\begin{array}{l}
\left\{ \begin{array}{l}
3x + 4y = 12\\
5x - 2y = 7
\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}
3x + 4y = 12\\
10x - 4y = 14
\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}
3x + 4y = 12\\
13x = 26
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
3.2 + 4y = 12\\
x = 2
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 2\\
y = \frac{3}{2}
\end{array} \right..
\end{array}\)
Vậy hệ phương trình có nghiệm \(\left( {x;\;y} \right) = \left( 2;\;\frac{3}{2}\right). \)
c) Nhân phương trình thứ nhất với \(2\) và phương trình thứ hai với \(3\) ta được:
\(\begin{array}{l}
\left\{ \begin{array}{l}
2x - 3y = 5\\
3x + 2y = 8
\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}
4x - 6y = 10\\
9x + 6y = 24
\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}
4x - 6y = 10\\
13x = 34
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
4.\frac{{34}}{{13}} - 6y = 10\\
x = \frac{{34}}{{13}}
\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}
x = \frac{{34}}{{13}}\\
6y = \frac{{136}}{{13}} - 10
\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}
x = \frac{{34}}{{13}}\\
y = \frac{1}{{13}}
\end{array} \right..
\end{array}\)
Vậy hệ phương trình có nghiệm \(\left( {x;\;y} \right) = \left( \frac{{34}}{{13}};\; \frac{1}{{13}}\right). \)
d) Nhân phương trình thứ nhất với \(5\) và phương trình thứ hai với \(3\) ta được:
\(\begin{array}{l}
\left\{ \begin{array}{l}
5x + 3y = 15\\
4x - 5y = 6
\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}
25x + 15y = 75\\
12x - 15y = 18
\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}
37x = 93\\
12x - 15y = 18
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = \frac{{93}}{{37}}\\
4x - 5y = 6
\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}
x = \frac{{93}}{{37}}\\
4.\frac{{93}}{{37}} - 5y = 6
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = \frac{{93}}{{37}}\\
y = \frac{{30}}{{37}}
\end{array} \right..
\end{array}\)
Vậy hệ phương trình có nghiệm \(\left( {x;\;y} \right) = \left(\frac{{93}}{{37}};\; \frac{{30}}{{37}}\right). \)
Copyright © 2021 HOCTAP247