Biến đổi thành tích các biểu thức sau
a) \(1 - \sin x\); b) \(1 + \sin x\);
c) \(1 + 2\cos x\); d) \(1 - 2\sin x\)
Áp dụng các công thức:
\(\begin{array}{l}
+ )\;\;\sin a + \sin b = 2\sin \frac{{a + b}}{2}\cos \frac{{a - b}}{2}.\\
+ )\;\;\sin a - \sin b = 2\cos \frac{{a + b}}{2}\sin \frac{{a - b}}{2}.\\
+ )\;\;\cos a + \cos b = 2\cos \frac{{a + b}}{2}\cos \frac{{a - b}}{2}.\\
+ )\;\;\cos a - \cos b = - 2\sin \frac{{a + b}}{2}\sin \frac{{a - b}}{2}.
\end{array}\)
Lời giải chi tiết
a) \(1 - \sin x = \sin \frac{\pi }{2} - \sin x \)
\(= 2\cos \frac{\frac{\pi }{2}+x}{2}\sin \frac{\frac{\pi}{2}-x}{2}\)
\(= 2 \cos \left ( \frac{\pi }{4} +\frac{x}{2}\right )\sin\left ( \frac{\pi }{4} -\frac{x}{2}\right )\)
b) \(1 + \sin x = \sin \frac{\pi }{2} + \sin x \)
\(= 2\sin \left ( \frac{\pi }{4} +\frac{x}{2}\right )\cos \left ( \frac{\pi }{4} -\frac{x}{2}\right )\)
c) \(1 + 2\cos x = 2( \frac{1}{2} + \cos x) \)
\(= 2(\cos \frac{\pi}{3} + \cos x) \)
\(= 4\cos \left ( \frac{\pi }{6} +\frac{x}{2}\right )\cos \left ( \frac{\pi }{6} -\frac{x}{2}\right )\)
d) \(1 - 2\sin x = 2( \frac{1}{2} - \sin x) \)
\(= 2(\sin \frac{\pi}{6} - \sin x)\)
\(= 4\cos \left ( \frac{\pi }{12} +\frac{x}{2}\right )\sin \left ( \frac{\pi }{12} -\frac{x}{2}\right )\)
Copyright © 2021 HOCTAP247