Rút gọn biểu thức
a) \({{2\sin 2\alpha - \sin 4\alpha } \over {2\sin 2\alpha + \sin 4\alpha }}\)
b) \(\tan \alpha ({{1 + {{\cos }^2}\alpha } \over {\sin \alpha }} - \sin \alpha )\)
c) \({{\sin ({\pi \over 4} - \alpha ) + \cos ({\pi \over 4} - \alpha )} \over {\sin ({\pi \over 4} - \alpha ) - \cos ({\pi \over 4} - \alpha )}}\)
d) \({{\sin 5\alpha - \sin 3\alpha } \over {2\cos 4\alpha }}\)
Áp dụng các công thức:
\(\begin{array}{l}
+ )\;cos2\alpha = 1 - 2{\sin ^2}\alpha = 2{\cos ^2}\alpha - 1.\\
+ )\;tan\alpha = \frac{{\sin \alpha }}{{\cos \alpha }}.\\
+ )\;\;tan\alpha .cot\alpha = 1.
\end{array}\)
Lời giải chi tiết
\(\eqalign{ a)& {{2\sin 2\alpha - \sin 4\alpha } \over {2\sin 2\alpha + \sin 4\alpha }} \cr&= {{2\sin 2\alpha - 2\sin 2\alpha .cos2\alpha } \over {2\sin 2\alpha + 2\sin 2\alpha .cos2\alpha }} \cr & = {{1 - \cos 2\alpha } \over {1 + \cos 2\alpha }} = {{2{{\sin }^2}\alpha } \over {2{{\cos }^2}\alpha }} \cr&=\tan^2\alpha.\cr} \)
\(\eqalign{b)& \tan \alpha \left({{1 + {{\cos }^2}\alpha } \over {\sin \alpha }} - \sin \alpha\right ) \cr&= {{\sin \alpha } \over {\cos \alpha }}\left({{1 + {{\cos }^2}\alpha - {{\sin }^2}\alpha } \over {\sin \alpha }}\right) \cr & = {{\sin \alpha } \over {\cos \alpha }}.{{2{{\cos }^2}\alpha } \over {\sin \alpha }} = 2\cos \alpha. \cr} \)
\(d) \, {{\sin 5\alpha - \sin 3\alpha } \over {2\cos 4\alpha }} = {{2\cos {{5\alpha + 3\alpha } \over 2}\sin {{5\alpha - 3\alpha } \over 2}} \over {2\cos 4\alpha }} \)\(= \sin \alpha \)
Copyright © 2021 HOCTAP247