Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho elip \((E) = {{{x^2}} \over {16}} + {{{y^2}} \over 9} = 1\) . Tìm tọa độ các đỉnh, các tiêu điểm và vẽ elip đó.

Hướng dẫn giải

  

Phương trình chính tắc của Elip \((E) = {{{x^2}} \over {16}} + {{{y^2}} \over 9} = 1\) có dạng là:

\({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)

Ta có:

\(\eqalign{
& \left\{ \matrix{
{a^2} = 16 \hfill \cr
{b^2} = 9 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a = 4 \hfill \cr
b = 3 \hfill \cr} \right. \cr
& c = \sqrt {{a^2} - {b^2}} = \sqrt 7 \cr} \)

+) Tọa độ các đỉnh \(A_1(-4;0), A_2(4; 0), B_1(0; -3)\) và \(B_2(0; 3)\)

+) Tọa độ các tiêu điểm \(F_1(-\sqrt7; 0)\) và \(F_2(\sqrt7; 0)\)

Copyright © 2021 HOCTAP247