Bài 9 trang 52 SGK Hình học 10 nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài
Bài 9. Cho tam giác \(ABC\) với ba đường trung tuyến \(AD, BE, CF\). Chứng minh rằng

\(\overrightarrow {BC} .\overrightarrow {AD}  + \overrightarrow {CA} .\overrightarrow {BE}  + \overrightarrow {AB} .\overrightarrow {CF}  = 0\).

Hướng dẫn giải

 

Ta có \(\overrightarrow {AD}  = {1 \over 2}(\overrightarrow {AB}  + \overrightarrow {AC} )\)

\(\eqalign{
& \overrightarrow {BE} = {1 \over 2}(\overrightarrow {BA} + \overrightarrow {BC} ) \cr
& \overrightarrow {CF} = {1 \over 2}(\overrightarrow {CA} + \overrightarrow {CB} ) \cr} \)

Do đó  \(\overrightarrow {BC} .\overrightarrow {AD}  + \overrightarrow {CA} .\overrightarrow {BE}  + \overrightarrow {AB} .\overrightarrow {CF} \)

\(\eqalign{
& = {1 \over 2}\overrightarrow {BC} (\overrightarrow {AB} + \overrightarrow {AC} ) + {1 \over 2}\overrightarrow {CA} (\overrightarrow {BA} + \overrightarrow {BC} ) + {1 \over 2}\overrightarrow {AB} (\overrightarrow {CA} + \overrightarrow {CB} ) \cr
& = {1 \over 2}(\overrightarrow {BC} \overrightarrow {AB} + \overrightarrow {BC} \overrightarrow {AC} + \overrightarrow {CA} \overrightarrow {BA} + \overrightarrow {CA} \overrightarrow {BC} + \overrightarrow {AB} \overrightarrow {CA} + \overrightarrow {AB} \overrightarrow {CB} )\cr
& = {1 \over 2}(\overrightarrow {BC} \overrightarrow {AB} + \overrightarrow {AB} \overrightarrow {CB} ) + {1 \over 2}(\overrightarrow {BC} \overrightarrow {AC} + \overrightarrow {CA} \overrightarrow {BC} ) + {1 \over 2}(\overrightarrow {CA} \overrightarrow {BA} + \overrightarrow {AB} \overrightarrow {CA} ) = 0 \cr} \)

(điều phải chứng minh)

Copyright © 2021 HOCTAP247