Chứng minh rằng nếu đường thẳng nối trung điểm hai cạnh \(AB\) và \(CD\) của tứ diện \(ABCD\) là đường vuông góc chung của \(AB\) và \(CD\) thì \(AC = BD\) và \(AD = BC\).
Qua \(I\) kẻ đường thẳng \(d // CD\), lấy trên \(d\) điểm \(E, F\) sao cho \(IE = IF = \frac{CD}{2}\)
Ta có \(IJ // CD\,\, (gt) \Rightarrow IJ // EF\), lại có \(IJ // AB \,\,(gt)\)
\(\Rightarrow IJ \bot (AEBF)\).
Ta có \(CDFE\) là hình bình hành có \(IJ\) là đường trung bình
\( \Rightarrow CE // DF // IJ\)
\( \Rightarrow \left\{ \begin{array}{l}CE \bot \left( {AEBF} \right) \Rightarrow CE \bot BE\\DF \bot \left( {AEBF} \right) \Rightarrow DF \bot AF\end{array} \right.\)
Ta có: \(\Delta AIF = \Delta BIE(c.g.c)\) suy ra: \(AF=BE\)
Xét \(∆DFA\) và \(∆CEB\) có:
+) \(\widehat E = \widehat F( = {90^0})\)
+) \(AF=BE\)
+) \(DF=CE\)
\(\Rightarrow ∆DFA=∆CEB(c.g.c) \Rightarrow AD = BC\).
Chứng minh tương tự ta được \(BD = AC\).
Copyright © 2021 HOCTAP247