Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 1. Các hàm số lượng giác Câu 1 trang 14 SGK Đại số và Giải tích 11 Nâng cao

Câu 1 trang 14 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 1. Tìm tập xác định của mỗi hàm số sau :

a. \(y = \sqrt {3 - \sin x} \) ;                                                                

b.  \(y = {{1 - \cos x} \over {\sin x}}\)

c. \(y = \sqrt {{{1 - \sin x} \over {1 + \cos x}}} \)                                                                 

d. \(y = \tan \left( {2x + {\pi \over 3}} \right)\) 

Hướng dẫn giải

a. Vì \(-1 ≤ sinx ≤ 1\) nên \(3 – sinx > 0\) với mọi \(x\) nên tập xác định của hàm số là: \(D =\mathbb R\)

b. \(y = {{1 - \cos x} \over {\sin x}}\) xác định khi và chỉ khi \(\sin x ≠ 0\)

\(⇔ x ≠ kπ, k \in\mathbb Z\)

Vậy tập xác định \(D =\mathbb R \backslash \left\{ kπ , k \in \mathbb Z\right\}\)

c. Vì \(1 – sinx ≥ 0\) và \(1 + cosx ≥ 0\) nên hàm số xác định khi và chỉ khi \(cosx ≠ -1 ⇔ x ≠ π + k2π, k \in\mathbb Z\)

Vậy tập xác định \(D =\mathbb R\backslash\left\{ π + k2π , k \in\mathbb Z\right\}\)

d. \(y = \tan \left( {2x + {\pi \over 3}} \right)\) xác định ⇔  \(\cos \left( {2x + {\pi \over 3}} \right) \ne 0\) 

\( \Leftrightarrow 2x + {\pi \over 3} \ne {\pi \over 2} + k\pi \Leftrightarrow {\pi \over {12}} + k{\pi \over 2},k \in \mathbb Z\)

Vậy tập xác định \(D =\mathbb R\backslash \left\{ {{\pi \over {12}} + k{\pi \over 2},k \in\mathbb Z} \right\}\)

Copyright © 2021 HOCTAP247