Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 1. Các hàm số lượng giác Câu 3 trang 14 SGK Đại số và Giải tích 11 Nâng cao

Câu 3 trang 14 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau :

a.  \(y = 2\cos \left( {x + {\pi \over 3}} \right) + 3\)

b.  \(y = \sqrt {1 - \sin \left( {{x^2}} \right)} - 1\)

c.  \(y = 4\sin \sqrt x \)

Hướng dẫn giải

a. Ta có: \(-1 ≤ \cos \left( {x + {\pi \over 3}} \right) ≤ 1\)

\(\eqalign{
& \Rightarrow - 2 \le 2\cos \left( {x + {\pi \over 3}} \right) \le 2\cr& \Rightarrow 1 \le 2\cos \left( {x + {\pi \over 3}} \right) + 3 \le 5 \Rightarrow 1 \le y \le 5 \cr
&\text{ Vậy }\cr&\min \,y = 1\,khi\,x + {\pi \over 3} = \pi + k2\pi \,\cr&\,\,\,\,\,\,\,\text{ khi} \,x = {{2\pi } \over 3} + k2\pi \cr
&\max \,y = 5\,khi\,x + {\pi \over 3} = k2\pi \,\text{ khi} \,x = - {\pi \over 3} + k2\pi \cr&\left( {k \in \mathbb Z} \right) \cr} \)

b. Ta có:  \(0 \le 1 - \sin {x^2} \le 2\)

\(\Rightarrow - 1 \le \sqrt {1 - \sin {x^2}} - 1 \le \sqrt 2 - 1 \)

\(\Rightarrow - 1 \le y \le \sqrt 2 - 1\)

\(\eqalign{
& \text{ Vậy }\,\min \,y = - 1\,\text{ khi} \,{x^2} = {\pi \over 2} + k2\pi ,k \ge 0,k \in\mathbb Z \cr
&\max\,y = \sqrt 2 - 1\text{ khi}\,{x^2} = - {\pi \over 2} + k2\pi ,k > 0,k \in \mathbb Z \cr} \)

c. Ta có:  \( - 1 \le \sin \sqrt x \le 1 \Rightarrow - 4 \le 4\sin \sqrt x \le 4\)

\(⇒ -4 ≤ y ≤ 4\)

\(\eqalign{
& \text{ Vậy }\cr&\min \,y = - 4\,\text{ khi}\,\sqrt x = - {\pi \over 2} + k2\pi ,k > 0,k \in\mathbb Z \cr
& \max \,y = 4\,\text{ khi}\,\sqrt x = {\pi \over 2} + k2\pi ,k \ge 0,k \in\mathbb Z \cr} \)

Copyright © 2021 HOCTAP247