Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 1. Các hàm số lượng giác Câu 12 trang 17 SGK Đại số và Giải tích 11 Nâng cao

Câu 12 trang 17 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 12. a. Từ đồ thị của hàm số \(y = \cos x\), hãy suy ra đồ thị của các hàm số sau và vẽ đồ thị của các hàm số đó :

\(y = \cos x + 2\)

\(y = \cos \left( {x - {\pi \over 4}} \right)\)

b. Hỏi mỗi hàm số đó có phải là hàm số tuần hoàn không ?

Hướng dẫn giải

a. Đồ thị của hàm số \(y = \cos x + 2\) có được do tịnh tiến đồ thị của hàm số \(y = \cos x\) lên trên một đoạn có độ dài bằng \(2\), tức là tịnh tiến theo vectơ \(2\overrightarrow j (\overrightarrow j = \left( {0,1} \right)\) là vecto đơn vị trên trục tung).

 

Đồ thị của hàm số \(y = \cos \left( {x - {\pi \over 4}} \right)\) có được do tịnh tiến đồ thị của hàm số y = cosx sang phải một đoạn có độ dài \({\pi \over 4}\), tức là tịnh tiến theo vexto \({\pi \over 4}\overrightarrow i (\overrightarrow i = \left( {1,0} \right)\) là vecto đơn vị trên trục hoành).

 

b. Các hàm số trên đều là hàm tuần hoàn vì :

nếu \(f(x) = \cos x + 2\) thì \(f(x + 2π) = \cos(x + 2π) + 2\)

                                                     \(= \cos x + 2 = f(x), ∀x \in\mathbb R\)

Và nếu \(g(x) = \cos \left( {x - {\pi \over 4}} \right)\) thì \(g(x + 2π) =  \cos \left( {x + 2\pi - {\pi \over 4}} \right)=\cos \left( {x - {\pi \over 4}} \right) = g\left( x \right)\) , \(∀x \in\mathbb R\)

Copyright © 2021 HOCTAP247