Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 1. Các hàm số lượng giác Câu 9 trang 17 SGK Đại số và Giải tích 11 Nâng cao

Câu 9 trang 17 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 9. Cho hàm số \(y = f(x) = A\sin(ωx + ∝)\) (\(A, ω\) và \(∝\) là những hằng số ; \(A\) và \(ω\) khác \(0\)). Chứng minh rằng với mỗi số nguyên \(k\)), ta có \(f\left( {x + k.{{2\pi } \over \omega }} \right) = f\left( x \right)\) với mọi \(x\).

Hướng dẫn giải

Với \(k \in \mathbb Z\) ta có :

\(\eqalign{
& f\left( {x + k.{{2\pi } \over \omega }} \right) = A\sin \left[ {\omega \left( {x + k{{2\pi } \over \omega }} \right) + \alpha } \right] \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = A\sin \left( {\omega x + \alpha + k2\pi } \right) = A\sin \left( {\omega x + \alpha } \right) = f\left( x \right) \cr} \)

Copyright © 2021 HOCTAP247