Câu 34 trang 42 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 34. Sử dụng công thức biến đổi tổng thành tích hoặc tích thành tổng để giải các phương trình sau :

a. \(\cos x\cos 5x = \cos 2x\cos 4x\) ;

b. \(\cos 5x\sin 4x=\cos 3x\sin 2x\) ;

c. \(\sin 2x + \sin 4x = \sin 6x\) ;

d. \(sin x + \sin 2x = \cos x + \cos 2x\)

Hướng dẫn giải

a. Ta có:

\(\eqalign{& \cos x\cos 5x = \cos 2x\cos 4x \cr & \Leftrightarrow {1 \over 2}\left( {\cos 6x + \cos 4x} \right) = {1 \over 2}\left( {\cos 6x + \cos 2x} \right) \Leftrightarrow \cos 4x = \cos 2x \cr & \Leftrightarrow \left[ {\matrix{{4x = 2x + k2\pi } \cr {4x = - 2x + k2\pi } \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k\pi } \cr {x = k{\pi \over 3}} \cr} } \right. \Leftrightarrow x = k{\pi \over 3} \,\,(k\in\mathbb Z)\cr} \) 

b.

\(\eqalign{& \cos 5x\sin 4x = \cos 3x\sin 2x \Leftrightarrow {1 \over 2}\left( {\sin 9x - \sin x} \right) = {1 \over 2}\left( {\sin 5x - \sin x} \right) \cr & \Leftrightarrow \sin 9x = \sin 5x \Leftrightarrow \left[ {\matrix{{9x = 5x + k2\pi } \cr {9x = \pi - 5x + k2\pi } \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k{\pi \over 2}} \cr {x = {\pi \over {14}} + k{\pi \over 7}} \cr} } \,\,(k\in\mathbb Z) \right. \cr} \)

c.

\(\eqalign{& \sin 2x + \sin 4x = \sin 6x \Leftrightarrow 2\sin 3x\cos x = 2\sin 3x\cos 3x \cr & \Leftrightarrow \sin 3x\left( {\cos x - \cos 3x} \right) = 0 \Leftrightarrow \left[ {\matrix{{\sin 3x = 0} \cr {\cos x = \cos 3x} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k{\pi \over 3}} \cr {x = k\pi } \cr {x = k{\pi \over 2}} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k{\pi \over 3}} \cr {x = k{\pi \over 2}} \cr} }  \,\,(k\in\mathbb Z)\right. \cr} \) 

d.

\(\eqalign{& \sin x + \sin 2x = \cos x + \cos 2x \Leftrightarrow 2\sin {{3x} \over 2}\cos {x \over 2} = 2\cos {{3x} \over 2}\cos {x \over 2} \cr & \Leftrightarrow \cos {x \over 2}\left( {\sin {{3x} \over 2} - \cos {{3x} \over 2}} \right) = 0 \Leftrightarrow \left[ {\matrix{{\cos {x \over 2} = 0} \cr {\sin {{3x} \over 2} = \cos {{3x} \over 2}} \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{{x \over 2} = {\pi \over 2} + k\pi } \cr {\tan {{3x} \over 2} = 1} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = \pi + k2\pi } \cr {x = {\pi \over 6} + k{{2\pi } \over 3}} \cr} } \right.\left( {k \in\mathbb Z} \right) \cr} \)

Copyright © 2021 HOCTAP247