Câu 39 trang 46 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 39. Chứng minh rằng các phương trình sau đây vô nghiệm :

a. \(\sin x – 2\cos x = 3\)

b. \(5\sin2x + \sin x + \cos x + 6 = 0\)

Hướng dẫn b. Đặt \(\sin x + \cos x = t\)

Hướng dẫn giải

a.

\(\sin x - 2\cos x = 3 \Leftrightarrow {1 \over {\sqrt 5 }}\sin x - {2 \over {\sqrt 5 }}\cos x = {3 \over {\sqrt 5 }} \Leftrightarrow \sin \left( {x - \alpha } \right) = {3 \over {\sqrt 5 }}\) trong đó \(α\) là số thỏa mãn \(\cos \alpha = {1 \over {\sqrt 5 }}\,\text{ và }\,\sin \alpha = {2 \over {\sqrt 5 }}.\) Phương trình cuối cùng vô nghiệm do \({3 \over {\sqrt 5 }} > 1,\) nên phương trình đã cho vô nghiệm.

b. Trong phương trình \(5\sin 2x + \sin x + \cos x + 6 = 0\), ta đặt \(t = \sin x + \cos x\) với điều kiện \(\left| t \right| \le \sqrt 2 \) thì được phương trình \(5{t^2} + t + 1 = 0.\) Phương trình này vô nghiệm nên phương trình đã cho vô nghiệm.

Copyright © 2021 HOCTAP247