Bài 61. Chọn ngẫu nhiên một số tự nhiên bé hơn 1000. Tính xác suất để số đó :
a. Chia hết cho 3
b. Chia hết cho 5
a. Các số chia hết cho 3 có dạng \(m = 3k\), ta có \(0 ≤ 3k ≤ 999 ⇔ 0 ≤ k ≤ 333\). Vậy có \(334\) số tự nhiên chia hết cho 3 và bé hơn 1000. Do đó xác suất để số chia hết cho 3 là : \(P = {{334} \over {1000}} = 0,334.\)
b. Các số chia hết cho 5 có dạng \(n = 5k\), ta có \(0 ≤ 5k ≤ 1000 ⇔ 0 ≤ k ≤ 200\).
Vậy có 200 số tự nhiên chia hết cho 5 và bé hơn 1000. Do đó \(P = {{200} \over {1000}} = 0,2\)
Copyright © 2021 HOCTAP247