Bài 11 trang 147 SGK Giải tích 12

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Tính các tích phân sau bằng phương pháp tính tích phân từng phần

a) \(\int_1^{{e^4}} {\sqrt x } \ln xdx\)

b) \(\int_{{\pi  \over 6}}^{{\pi  \over 2}} {{{xdx} \over {{{\sin }^2}x}}} \)

c) \(\int_0^\pi  {(\pi  - x)\sin {\rm{x}}dx} \)

d) \(\int_{ - 1}^0 {(2x + 3){e^{ - x}}} dx\)

Hướng dẫn giải

+) Sử dụng các công thức nguyên hàm cơ bản để tính tích phân.

+) Sử dụng phương pháp đưa vào vi phân.

+) Sử dụng công thức tích phân từng phần: \(\int\limits_a^b {u\left( x \right)dv\left( x \right)}  = \left. {u\left( x \right).v\left( x \right)} \right|_a^b - \int\limits_a^b {v\left( x \right)du\left( x \right).} \)

Lời giải chi tiết

a) Đặt  \(\left\{ \begin{array}{l}u = \ln x\\dv = \sqrt x dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \frac{1}{x}dx\\v = \frac{2}{3}{x^{\frac{3}{2}}}\end{array} \right..\)

\(\begin{array}{l}
\Rightarrow \int\limits_1^{{e^4}} {\sqrt x \ln xdx} = \left. {\frac{2}{3}{x^{\frac{3}{2}}}\ln x} \right|_1^{{e^4}} - \int\limits_1^{{e^4}} {\frac{2}{3}{x^{\frac{3}{2}}}.\frac{1}{x}dx} \\
= \frac{8}{3}{e^6} - \int\limits_1^{{e^4}} {\frac{2}{3}{x^{\frac{1}{2}}}dx} = \frac{8}{3}{e^6} - \left. {\frac{2}{3}.\frac{2}{3}{x^{\frac{3}{2}}}} \right|_1^{{e^4}}\\
= \frac{8}{3}{e^6} - \frac{4}{9}{e^6} + \frac{4}{9}= \frac{20}{9}{e^6}+ \frac{4}{9}.
\end{array}\)

b) Ta có: 

\(\eqalign{
& \int_{{\pi \over 6}}^{{\pi \over 2}} {{{xdx} \over {{{\sin }^2}x}}} = \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {xd( - \cot x) = - x\cot x\left| {_{{\pi \over 6}}^{{\pi \over 2}}} \right.} + \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {\cot xdx} \cr
& = {{\pi \sqrt 3 } \over 6} + \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {{{d\sin x} \over {{\mathop{\rm s}\nolimits} {\rm{inx}}}}} = {{\pi \sqrt 3 } \over 6} + \ln |sinx|\left| {_{{\pi \over 6}}^{{\pi \over 2}}} \right. = {{\pi \sqrt 3 } \over 6} + \ln 2 \cr} \)

 c) Ta có: 

\(\eqalign{
& \int_0^\pi {(\pi - x)\sin {\rm{x}}dx} = \int\limits_0^\pi {(\pi - x)d( - {\mathop{\rm cosx}\nolimits} )} \cr
& = - (\pi - x)cosx\left| {_0^\pi } \right. + \int\limits_0^\pi {{\mathop{\rm cosxd}\nolimits} (\pi - x) = \pi - s{\rm{inx}}\left| {_0^\pi } \right.} = \pi \cr} \)

 d) Ta có: 

\(\eqalign{
& \int_{ - 1}^0 {(2x + 3){e^{ - x}}} dx = \int\limits_{ - 1}^0 {(2x + 3)d( - {e^{ - x}}} ) \cr
& = (2x + 3){e^{ - x}}\left| {_0^{ - 1}} \right. + \int\limits_{ - 1}^e {{e^{ - x}}} .2dx = e - 3 + 2{e^{ - x}}\left| {_0^1} \right. = 3e - 5 \cr} \)

Copyright © 2021 HOCTAP247