Trang chủ Lớp 12 Toán Lớp 12 SGK Cũ Bài 2. Cực trị của hàm số Bài 11 trang 16 và 17 SGK Đại số và Giải tích 12 Nâng cao

Bài 11 trang 16 và 17 SGK Đại số và Giải tích 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 11. Tìm cực trị của các hàm số sau:

a) \(f\left( x \right) = {1 \over 3}{x^3} + 2{x^2} + 3x - 1\);

b) \(f\left( x \right) = {1 \over 3}{x^3} - {x^2} + 2x - 10\)

c) \(f\left( x \right) = x + {1 \over x}\);

d) \(f\left( x \right) = \left| x \right|\left( {x + 2} \right);\)

e) \(f\left( x \right) = {{{x^5}} \over 5} - {{{x^3}} \over 3} + 2\);

f) \(f\left( x \right) = {{{x^2} - 3x + 3} \over {x - 1}}\)

Hướng dẫn giải

a) TXĐ: \(D=\mathbb R\)

\(f'\left( x \right) = {x^2} + 4x + 3;\,f'\left( x \right) = 0 \Leftrightarrow \left[ \matrix{
x = - 1 \hfill \cr
x = - 3 \hfill \cr} \right.;f\left( { - 1} \right) = - {7 \over 3};\,f\left( { - 3} \right) = - 1\)

Hàm số đạt cực đại tại điểm \(x =  - 3\), giá trị cực đại của hàm số là \(f\left( { - 3} \right) =  - 1\)

Hàm số đạt cực tiểu tại điểm \(x =  - 1\), giá trị cực tiểu của hàm số là \(f\left( { - 1} \right) =  - {7 \over 3}\)

b) TXĐ: \(D=\mathbb R\)

\(f'\left( x \right) = {x^2} - 2x + 2 > 0\) với mọi \(x \in\mathbb R\) (vì \(a > 0,\Delta ' < 0\))

Hàm số đồng biến trên \(\mathbb R\) , không có cực trị.
c) TXĐ: \(D = \mathbb R\backslash \left\{ 0 \right\}\)

\(f'\left( x \right) = 1 - {1 \over {{x^2}}} = {{{x^2} - 1} \over {{x^2}}};f'\left( x \right) = 0 \Leftrightarrow \left[ \matrix{
x = 1\,\,\,\,;f\left( 1 \right) = 2 \hfill \cr
x = - 1;f\left( { - 1} \right) = - 2 \hfill \cr} \right.\)

Hàm số đạt cực đại tại điểm \(x=-1\), giá trị cực đại \(f\left( { - 1} \right) =  - 2\). Hàm số đạt cực tiểu tại điểm \(x=1\), giá trị cực tiểu \(f\left( 1 \right) = 2\).

d) TXĐ: \(D=\mathbb R\) Hàm số liên tục trên \(\mathbb R\)

\(f\left( x \right) = \left\{ \matrix{
x\left( {x + 2} \right)\,\,\,\,\,\,\,x \ge 0 \hfill \cr
- x\left( {x + 2} \right)\,\,\,\,\,x < 0\, \hfill \cr} \right.\)

Với \(x > 0:\,f'\left( x \right) = 2x + 2 > 0\) với mọi \(x>0\)

Với \(x < 0:\,f'\left( x \right) =  - 2x - 2\,;\,\,f'\left( x \right) = 0 \Leftrightarrow x =  - 1\)

\(f\left( { - 1} \right) = 1\)

Hàm số đạt cực đại tại \(x=-1\), giá trị cực đại \(f\left( { - 1} \right) = 1\). Hàm số đạt cực tiểu tại điểm \(x=0\), giá trị cực tiểu \(f\left( 0 \right) = 0\)

e) TXĐ: \(D=\mathbb R\)

\(f'\left( x \right) = {x^4} - {x^2} = {x^2}\left( {{x^2} - 1} \right)\)

\(f'\left( x \right) = 0 \Leftrightarrow \left[ \matrix{
x = 0;f\left( 0 \right) = 2 \hfill \cr
x = - 1;f\left( { - 1} \right) = {{32} \over {15}} \hfill \cr
x = 1;f\left( 1 \right) = {{28} \over {15}} \hfill \cr} \right.\)

Hàm số đạt cực đại tại điểm \(x=-1\), giá trị cực đại \(f\left( { - 1} \right) = {{32} \over {15}}\)

Hàm số đạt cực tiểu tại \(x=1\), giá trị cực tiểu \(f\left( 1 \right) = {{28} \over {15}}\)

f) TXĐ: \(D = {\bf{R}}\backslash \left\{ 1 \right\}\)

\(y'\left( x \right) = {{\left( {2x - 3} \right)\left( {x - 1} \right) - \left( {{x^2} - 3x + 3} \right)} \over {{{\left( {x - 1} \right)}^2}}} = {{{x^2} - 2x} \over {{{\left( {x - 1} \right)}^2}}}\)

\(f'\left( x \right) = 0 \Leftrightarrow \left[ \matrix{
x = 0;f\left( 0 \right) = - 3 \hfill \cr
x = 2;f\left( 2 \right) = 1 \hfill \cr} \right.\)

Hàm số đạt cực đại tại điểm \(x=0\), giá trị cực đại \(f\left( 0 \right) =  - 3\)

Hàm số đạt cực tiểu tại điểm \(x=2\), giá trị cực tiểu \(f\left( 2 \right) = 1\)

Copyright © 2021 HOCTAP247