Trang chủ Lớp 12 Toán Lớp 12 SGK Cũ Bài 2. Cực trị của hàm số Bài 15 trang 17 SGK Đại số và Giải tích 12 Nâng cao

Bài 15 trang 17 SGK Đại số và Giải tích 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 15. Chứng minh rằng với mọi giá trị của \(m\), hàm số: \(y = {{{x^2} - m\left( {m + 1} \right)x + {m^3} + 1} \over {x - m}}\) luôn có cực đại và cực tiểu

Hướng dẫn giải

TXĐ: \(D = {\mathbb{R}}\backslash \left\{ m \right\}\)

\(\eqalign{
& y' = {{\left[ {2x - m\left( {m + 1} \right)} \right]\left( {x - m} \right) - \left[ {{x^2} - m\left( {m + 1} \right)x + {m^3} + 1} \right]} \over {{{\left( {x - m} \right)}^2}}} \cr
& \,\,\,\,\, = {{{x^2} - 2mx + {m^2} - 1} \over {{{\left( {x - m} \right)}^2}}},x \ne m \cr} \)

\(\eqalign{
& y' = 0 \Leftrightarrow {x^2} - 2mx + {m^2} - 1 = 0 \Leftrightarrow {\left( {x - m} \right)^2} = 1 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left[ \matrix{
x = m - 1;f\left( {m - 1} \right) = - {m^2} + m - 2 \hfill \cr
x = m + 1;f\left( {m + 1} \right) = - {m^2} + m + 2 \hfill \cr} \right. \cr} \)

Với mọi giá trị của \(m\), hàm số đạt cực đại tại điểm \(x=m-1\) và đạt cực tiểu tại điểm \(x=m+1\)

Copyright © 2021 HOCTAP247