Bài 17 trang 89 SGK Hình học 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 17. Xác định giá trị của m và n để mỗi cặp mặt phẳng sau đây song song:

a) \(2x + ny + 2z + 3 = 0\) và \(mx + 2y - 4z + 7 = 0\).
b) \(2x + y + mz - 2 = 0\) và \(x + ny + 2z + 8 = 0\).

Hướng dẫn giải

a) Hai mặt phẳng đã cho song song với nhau khi và chỉ khi:

\({2 \over m} = {n \over 2} = {2 \over { - 4}} \ne {3 \over 7} \Leftrightarrow \left\{ \matrix{
m = - 4 \hfill \cr
n = - 1 \hfill \cr} \right.\)

b) Hai mặt phẳng đã cho song song với nhau khi và chỉ khi:

\({2 \over 1} = {1 \over n} = {m \over 2} \ne {{ - 2} \over 8} \Leftrightarrow \left\{ \matrix{
m = 4 \hfill \cr
n = {1 \over 2} \hfill \cr} \right.\)

Copyright © 2021 HOCTAP247