Bài 18 trang 90 SGK Hình học 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 18. Cho hai mặt phẳng có phương trình là
\(2x - my + 3z - 6 + m = 0\) và \(\left( {m + 3} \right)x - 2y + \left( {5m + 1} \right)z - 10 = 0\)
Với giá trị nào của m thì:
a) Hai mặt phẳng đó song song ;
b) Hai mặt phẳng đó trùng nhau ;
c) Hai mặt phẳng đó cắt nhau ;
d) Hai mặt phẳng đó vuông góc?

Hướng dẫn giải

Mặt phẳng \(2x - my + 3z - 6 + m = 0\) có vectơ pháp tuyến \(\overrightarrow {{n_1}}  = \left( {2; - m;3} \right)\).
Mặt phẳng \(\left( {m + 3} \right)x - 2y + \left( {5m + 1} \right)z - 10 = 0\) có vectơ pháp tuyến \(\overrightarrow {{n_2}}  = \left( {m + 3; - 2;5m + 1} \right)\).
Ta có

\(\left[ {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right] = \overrightarrow 0 \Leftrightarrow \left\{ \matrix{
- 5{m^2} - m + 6 = 0 \hfill \cr
- 7m + 7 = 0 \hfill \cr
{m^2} + 3m - 4 = 0 \hfill \cr} \right. \Leftrightarrow m = 1\)

Với m = 1 thì hai mặt phẳng có phương trình \(2x - y + 3z - 5 = 0\) và \(4x - 2y + 6z - 10 = 0\) nên chúng trùng nhau. Vậy:

a) Không tồn tại m để hai mặt phẳng đó song song.
b) Với m = 1 thì hai mặt phẳng đó trùng nhau.
c) Với \(m \ne 1\) thì hai mặt phẳng đó cắt nhau.
d) Hai mặt phẳng đó vuông góc với nhau khi và chỉ khi

\(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 0 \Leftrightarrow 2\left( {m + 3} \right) + 2m + 3\left( {5m + 1} \right) = 0 \Leftrightarrow 19m + 9 = 0 \Leftrightarrow m = {{ - 9} \over {19}}\)

Copyright © 2021 HOCTAP247