Bài 12 trang 124 SGK Hình học 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 12.Cho hình hộp chữ nhật ABCD.A’B’C’D’ với AB = a, BC = b, CC’ = c.

a) Tính khoảng cách từ điểm A tới mp(A’BD).

b) Tính khoảng cách từ điểm A’ tới đường thẳng C’D.

c) Tính khoảng cách giữa hai đường thẳng BC’CD’.

Hướng dẫn giải


a) Chọn hệ trục tọa độ Oxyz như hình vẽ.
Ta có: \(A'\left( {0;0;c} \right),\,\,B\left( {a;0;0} \right),\,\,D\left( {0;b;0} \right).\)
Phương trình mặt phẳng (A’BD) là: \({x \over a} + {y \over b} + {z \over c} - 1 = 0.\)
Khoảng cách từ A(0; 0; 0) tới mp(A’BD) là:

\(d = {{\left| { - 1} \right|} \over {\sqrt {{1 \over {{a^2}}} + {1 \over {{b^2}}} + {1 \over {{c^2}}}} }} = {{abc} \over {\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} }}.\)

b) Ta có \(C'\left( {a;b;c} \right).\)

\(\eqalign{
& \overrightarrow {A'C'} = \left( {a,b,0} \right),\overrightarrow {C'D} = \left( { - a;0; - c} \right) \cr
& \left[ {\overrightarrow {A'C'} ,\overrightarrow {C'D} } \right] = \left( { - bc,ac,ab} \right). \cr} \)

Khoảng cách từ \(A'\left( {0,0,c} \right)\) tới đường thẳng C’D là:

\({h_1} = {{\left| {\left[ {\overrightarrow {A'C'} ,\overrightarrow {C'D} } \right]} \right|} \over {\left| {\overrightarrow {C'D} } \right|}} = {{\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} } \over {\sqrt {{a^2} + {c^2}} }}.\)

c)  Ta có \(\overrightarrow {BC'}  = \left( {0,b,c} \right),\overrightarrow {CD'}  = \left( { - a,0,c} \right),\overrightarrow {BC}  = \left( {0,b,0} \right),\) khoảng cách giữa BC’ và CD’ là:

\({h_2} = {{\left| {\left[ {\overrightarrow {BC'} ,\overrightarrow {CD'} } \right].\overrightarrow {BC} } \right|} \over {\left| {\left[ {\overrightarrow {BC'} ,\overrightarrow {CD'} } \right]} \right|}} = {{abc} \over {\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} }}.\)

Copyright © 2021 HOCTAP247