Bài 2. Cho tứ diện ABCD có thể tích V. Hãy tính thể tích hình tứ diện có đỉnh là trọng tâm các mặt của tứ diện đã cho.
Gọi G là trọng tâm tứ diện ABCD và A’, B’, C’, D’ lần lượt là trọng tâm các tam giác BCD, ACD, ABD, ABC. Gọi \(V\left( {G; - {1 \over 3}} \right)\) là phép vị tự tâm G tỉ số \(k = - {1 \over 3}.\) Ta có: \(\overrightarrow {GA'} = - {1 \over 3}\overrightarrow {GA} .\)
Suy ra: \(V\left( {G; - {1 \over 3}} \right):A \to A'.\)
Tương tự: \(B \to B'\)
\(\eqalign{
& C \to C' \cr
& D \to D'. \cr} \)
Do đó: \(V:ABCD \to A'B'C'D'.\) Vậy \({V_{A'B'C'D'}} = {\left| k \right|^3}{V_{ABCD}} = {1 \over {27}}V.\)
Copyright © 2021 HOCTAP247