Chẳng hạn:
- \((O_1)\) là đường tròn ngoại tiếp tam giác \(ABC\), tam giác \(ABC\) nội tiếp đường tròn \((O_1)\)
- \((O_2)\) là đường tròn ngoại tiếp ngũ giác \(MNOPQ\), ngũ giác \(MNOPQ\) nội tiếp đường tròn \((O_2)\)
Chẳng hạn, tứ giác \(ABCD\) là tứ giác ngoại tiếp đường tròn \((O_1)\), \((O_1)\) là đường tròn nội tiếp tứ giác \(ABCD\)
- Tam giác ABC đều có tâm đường tròn nội tiếp và ngoại tiếp trùng nhau
- Hình vuông XYZT có tâm đường tròn nội tiếp và ngoại tiếp trùng nhau
Bài 1: Cho tam giác ABC đều nội tiếp đường tròn (O;10cm). Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Tính r?
Hướng dẫn:
Tam giác ABC đều nên O là tâm đường tròn ngoại tiếp cũng đồng thời là tâm đường tròn ngoại tiếp của tam giác.
Vẽ đường cao BE của tam giác. Khi đó, do tam giác ABC đều nên BE là đường trung tuyến.
Ngoài ra, O cũng là trọng tâm của tam giác đều ABC. Do đó \(r=\frac{R}{2}=\frac{10}{2}=5cm\)
Bài 2: Cho hình vuông XYZT có tâm I. Tính chu vi đường tròn ngoại tiếp của hình vuông biết chu vi đường tròn nội tiếp của hình vuông XYZT là \(20\pi\)(cm)
Hướng dẫn:
Đặt \(R,r (cm)\) lần lượt là bán kính đường tròn ngoại tiếp và nội tiếp của hình vuông XYZT.
Theo đề bài, chu vi đường tròn nội tiếp của hình vuông XYZT là \(20\pi\)(cm) nên \(2r.\pi=20\Rightarrow r=10 cm\)
Vẽ \(ID\perp XY (D\in XY)\)
Khi đó tam giác IXD vuông cân tại D, áp dụng định lí Pytago ta có \(R^2=2r^2\Rightarrow R=\sqrt{2.10^2}=10\sqrt{2} cm\)
Chu vi đường tròn ngoại tiếp của hình vuông là: \(2\pi R=20\sqrt{2} \pi (cm)\)
Bài 3: Cho hình vuông MNPQ có cạnh bằng 4cm. Tính diện tích hình vuông, diện tích hình tròn nội tiếp và ngoại tiếp hình vuông MNPQ.
Hướng dẫn:
Diện tích hình vuông MNPQ là: \(S_{MNPQ}=4^2=16(cm^2)\)
Kẻ \(OS\perp PQ (S\in PQ)\) thì \(SQ=SP=2cm\)
Dễ chứng minh tam giác OSQ vuông cân tại S
Áp dụng định lí Pytago cho tam giác vuông cân OSQ ta có \(OQ=\sqrt{2.OS^2}=2\sqrt{2}(cm)\)
Diện tích hình tròn nội tiếp hình vuông là: \(S_{1}=OS^2.\pi=4\pi (cm^2)\)
Diện tích hình tròn ngoại tiếp hình vuông là: \(S_{2}=OQ^2.\pi=(2\sqrt{2})^2\pi=8\pi (cm^2)\)
Bài 1: Chứng minh rằng: Trong hình vuông, bán kính đường tròn ngoại tiếp luôn lớn hơn bán kính đường tròn nội tiếp của hình vuông đó.
Hướng dẫn:
Xét hình vuông ABCD có tâm O, kẻ \(OM\perp CD (M\in CD)\)
Lúc đó OD là bán kính đường tròn ngoại tiếp, OM là bán kính đường tròn nội tiếp hình vuông ABCD
\(\bigtriangleup OMD\) vuông tại M nên \(OD\geq OM\) (1)
Giả sử \(OD= OM\) khi đó đường tròn nội tiếp và đường tròn ngoại tiếp là hai đường tròn có chung tâm O và độ dài hai bán kính bằng nhau nên chúng trùng nhau.
Lúc đó không tồn tại hình vuông vừa có đỉnh trên đường tròn (O) vừa có cạnh tiếp xúc với đường tròn (O)
Do đó \(OD\neq OM\) kết hợp với (1) ta có \(OD> OM\) (đpcm)
Bài 2: Cho lục giác đều ABCDEF có tâm O. Đặt R,r lần lượt là bán kính đường tròn ngoại tiếp và nội tiếp lục giác. Viết biểu thức liên hệ giữa R và r.
Hướng dẫn:
Lục giác ABCDEF đều nên chia đường tròn ngoại tiếp (O) thành 6 cung bằng nhau, suy ra \(\widehat{AOF}=\frac{360^0}{6}=60^0\)
Tam giác AOF cân tại O có \(\widehat{AOF}=60^0\) nên \(\bigtriangleup AOF\) đều.
Vẽ đường cao AH của \(\bigtriangleup AOF\) khi đó \(OH=r\) và \(AH=\frac{R}{2}\)
\(\bigtriangleup AOH\) vuông tại H nên \(AO^2=OH^2+AH^2\Rightarrow R^2=r^2+(\frac{R}{2})^2\Rightarrow r^2=\frac{3R^2}{4}\Rightarrow r=\frac{R\sqrt{3}}{2}\)
3. Luyện tập Bài 8 Chương 3 Hình học 9
Qua bài giảng Đường tròn ngoại tiếp và đường tròn nội tiếp này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 9 Bài 8 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 9 Bài 8 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 9 tập 1
Bài tập 61 trang 91 SGK Toán 9 Tập 2
Bài tập 62 trang 91 SGK Toán 9 Tập 2
Bài tập 63 trang 92 SGK Toán 9 Tập 2
Bài tập 64 trang 92 SGK Toán 9 Tập 2
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Copyright © 2021 HOCTAP247