Trang chủ Công thức Tìm số nút và số bụng

Công thức tính số nút và số bụng trong sóng dừng

Công thức : Tìm số nút và số bụng

Ta có:   \(d\)( 1 nút  \(\rightarrow\) 1 nút) \(=\dfrac{\lambda}{2}\);    \(d\)( 1 nút  \(\rightarrow\) 1 bụng)  \(=\dfrac{\lambda}{4}\)

+)  Trường hợp 2 đầu cố định:     \(\left\{\begin{matrix}l=k\dfrac{\lambda}{2}, k\in \mathbb { Z}\\ f=\dfrac{kv}{2l} \rightarrow f_{min}=\dfrac{v}{2l}\end{matrix}\right.\)

 Số bụng =  \(k\), số nút=  \(k+1\)

+) Trường hợp 1 đầu cố định, 1 đầu tự do:    \(\left\{\begin{matrix}l=(2k+1)\dfrac{\lambda}{4} , k \in \mathbb{Z}\\ f=\dfrac{(2k+1)v}{4l} \rightarrow f_{min}=\dfrac{v}{4l}\end{matrix}\right.\)

Số bụng = Số nút =  \(k\)

Một số lưu ý: 

Đầu cố định hoặc đầu dao động nhỏ là nút sóng

Đầu tự do là bụng sóng

Hai điểm đối xứng với nhau qua nút sóng luôn dao động ngược pha

Hai điểm đối xứng với nhau qua bụng sóng luôn doa động cùng pha

Tốc độ truyền âm trong kim loại:   \(\Delta t=\dfrac{l}{v_{kk}}-\dfrac{l}{v_{kl}}\)

 

Bài trước

Phương trình sóng dừng

Copyright © 2021 HOCTAP247