Có hai hộp bi, nếu lấy số bi từ hộp thứ nhất một số bi bằng số bi hộp thứ hai rồi bỏ vào hộp thứ hai, rồi lại lấy từ hộp thứ hai một số bi bằng số bi còn lại của hộp thứ nhất

Câu hỏi :

Có hai hộp bi, nếu lấy số bi từ hộp thứ nhất một số bi bằng số bi hộp thứ hai rồi bỏ vào hộp thứ hai, rồi lại lấy từ hộp thứ hai một số bi bằng số bi còn lại của hộp thứ nhất và bỏ vào hộp thứ nhất, cuối cùng lấy từ hộp thứ nhất số bi bằng số bị còn lại của hộp thứ hai bỏ vào hộp thứ hai, ta được mỗi hộp đều 16 viên. Số viên bi ban đầu của các hộp lần lượt là:

A. \(24;8\)

B. \(22;10\)

C. \(20;12\)

D. \(18;14\)

* Đáp án

B

* Hướng dẫn giải

Gọi số bi hai hộp lần lượt là \(x;y(x>y>0)\)

Theo đề, ta có: \(x+y=16.2=32\)

Ta sẽ đi từ cách lấy cuối cùng để tìm lần lượt số bi sau mỗi lần lấy:

"cuối cùng lấy từ hộp thứ nhất số bi bằng số bị còn lại của hộp thứ hai bỏ vào hộp thứ hai"

Suy ra số bi để cho vào hộp thứ hai là \(\frac{16}{2}=8\) viên

Lúc đó số bi của hộp thứ nhất là \(32-8=24\) viên.

Chúng ta đi tiếp đến ý "rồi lại lấy từ hộp thứ hai một số bi bằng số bi còn lại của hộp thứ nhất và bỏ vào hộp thứ nhất"

Suy ra số bi để cho vào hộp thứ nhất lúc này là \(\frac{24}{2}=12\) viên

Lúc đó số bi của hộp thứ hai là \(32-12=20\) viên.

Đến ý cuối cùng để tìm ra bài toán "nếu lấy số bi từ hộp thứ nhất một số bi bằng số bi hộp thứ hai rồi bỏ vào hộp thứ hai"

Số bi để cho vào hộp thứ hai lúc này là \(\frac{20}{2}=10\) viên (cũng chính là số bi trong hộp thứ hai lúc ban đầu)

Vậy số viên bi ban đầu của hộp thứ nhất là \(32-10=22\) viên

 

Copyright © 2021 HOCTAP247