Cho nửa đường tròn tâm O, đường kính AB. Một điểm M nằm trên cung AB (M khác A, M khác B). Gọi H là điểm chính giữa của cung AM. Tia BH cắt AM tại I và cắt tiếp tuyến tại A của nửa...

Câu hỏi :

Cho nửa đường tròn tâm O, đường kính AB. Một điểm M nằm trên cung AB (M khác A, M khác B). Gọi H là điểm chính giữa của cung AM. Tia BH cắt AM tại I và cắt tiếp tuyến tại A của nửa đường tròn (O) tại K. Các tia AH, BM cắt nhau tại S.1)      Chứng minh điểm S nằm trên một đường tròn cố định.2)  Kéo dài AM cắt đường tròn (B; BA) tại điểm thứ hai là N. Chứng minh tứ giác BISN là tứ giác nội tiếp.

* Đáp án

* Hướng dẫn giải

Phương pháp giải:

Copyright © 2021 HOCTAP247