A. \(x = 10\,\,cm;\,\,{B_{max}} = {4.10^{ - 5}}\,\,\left( T \right)\).
B. \(x = 5\sqrt 2 \,\,cm;\,\,{B_{max}} = {4.10^{ - 5}}\,\,\left( T \right)\)
C. \(x = 5\sqrt 2 \,\,cm;\,\,{B_{max}} = 2\sqrt 3 {.10^{ - 5}}\,\,\left( T \right)\).
D. \(x = 10\,\,cm;\,\,{B_{\max }} = 2\sqrt 3 {.10^{ - 5}}\,\,\left( T \right)\).
B
Cảm ứng từ do mỗi dòng điện gây ra là: \({B_1} = {B_2} = {2.10^{ - 7}}\frac{I}{x}\)
Từ hình vẽ ta thấy: \(B = 2{B_1}\cos \alpha \)
Lại có: \(\cos \alpha = \frac{{\sqrt {{x^2} - {{\left( {\frac{a}{2}} \right)}^2}} }}{x} = \frac{{\sqrt {{x^2} - \frac{{{a^2}}}{4}} }}{x}\) \( \Rightarrow B = {2.2.10^{ - 7}}I.\frac{{\sqrt {{x^2} - \frac{{{a^2}}}{4}} }}{{{x^2}}}\)
Xét hàm số: \(y = \frac{{\sqrt {{x^2} - \frac{{{a^2}}}{4}} }}{{{x^2}}} = \sqrt {\frac{1}{{{x^2}}} - \frac{{{a^2}}}{{4{x^4}}}} \)
Ta có: \({y^2} = \frac{1}{{{x^2}}} - \frac{{{a^2}}}{{4{x^4}}} \\= - {\left( {\frac{a}{2}} \right)^2}.{\left( {\frac{1}{{{x^2}}}} \right)^2} + 2.\frac{a}{2}.\frac{1}{a}.\frac{1}{{{x^2}}} - {\left( {\frac{1}{a}} \right)^2} + {\left( {\frac{1}{a}} \right)^2}\)
\( \Rightarrow {y^2} = - {\left( {\frac{a}{2}.\frac{1}{{{x^2}}} - \frac{1}{a}} \right)^2} + \frac{1}{{{a^2}}}\)
Mà \({\left( {\frac{a}{2}.\frac{1}{{{x^2}}} - \frac{1}{a}} \right)^2} \ge 0 \\\Rightarrow - {\left( {\frac{a}{2}.\frac{1}{{{x^2}}} - \frac{1}{a}} \right)^2} + \frac{1}{{{a^2}}} \le \frac{1}{{{a^2}}}\)
\( \Rightarrow {\left( {{y^2}} \right)_{\max }} = \frac{1}{{{a^2}}} \Rightarrow {y_{\max }} = \frac{1}{a}\)
Khi \(\frac{a}{2}.\frac{1}{{{x^2}}} - \frac{1}{a} = 0 \Rightarrow \frac{1}{{{x^2}}} = \frac{2}{{{a^2}}}\\ \Rightarrow x = \frac{a}{{\sqrt 2 }} = 5\sqrt 2 \,\,\left( {cm} \right)\)
\( \Rightarrow {B_{\max }} = {2.2.10^{ - 7}}I.{y_{\max }}\\ = {2.2.10^{ - 7}}.I.\sqrt {\frac{1}{{{a^2}}}} = {4.10^{ - 5}}\,\,\left( T \right)\)
Chọn B.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247