Hai dòng điện cùng chiều cường độ \({I_1} = {I_2} = 10\,\,A\) chạy trong hai dây dẫn thẳng song song dài vô hạn, được đặt trong chân không cách nhau một khoảng \(a = 10\,\,cm\). Mộ...

Câu hỏi :

Hai dòng điện cùng chiều cường độ \({I_1} = {I_2} = 10\,\,A\) chạy trong hai dây dẫn thẳng song song dài vô hạn, được đặt trong chân không cách nhau một khoảng \(a = 10\,\,cm\). Một điểm \(M\) cách đều hai dòng điện một khoảng \(x\). Để cảm ứng từ tổng hợp tại \(M\) đạt giá trị lớn nhất thì \(x\) có giá trị là bao nhiêu? Giá trị cảm ứng từ cực đại \({B_{max}}\) khi đó là bao nhiêu?

A. \(x = 10\,\,cm;\,\,{B_{max}} = {4.10^{ - 5}}\,\,\left( T \right)\).

B. \(x = 5\sqrt 2 \,\,cm;\,\,{B_{max}} = {4.10^{ - 5}}\,\,\left( T \right)\)

C. \(x = 5\sqrt 2 \,\,cm;\,\,{B_{max}} = 2\sqrt 3 {.10^{ - 5}}\,\,\left( T \right)\).

D. \(x = 10\,\,cm;\,\,{B_{\max }} = 2\sqrt 3 {.10^{ - 5}}\,\,\left( T \right)\).

* Đáp án

B

* Hướng dẫn giải

Cảm ứng từ do mỗi dòng điện gây ra là: \({B_1} = {B_2} = {2.10^{ - 7}}\frac{I}{x}\)

Từ hình vẽ ta thấy: \(B = 2{B_1}\cos \alpha \)

Lại có: \(\cos \alpha  = \frac{{\sqrt {{x^2} - {{\left( {\frac{a}{2}} \right)}^2}} }}{x} = \frac{{\sqrt {{x^2} - \frac{{{a^2}}}{4}} }}{x}\) \( \Rightarrow B = {2.2.10^{ - 7}}I.\frac{{\sqrt {{x^2} - \frac{{{a^2}}}{4}} }}{{{x^2}}}\)

Xét hàm số: \(y = \frac{{\sqrt {{x^2} - \frac{{{a^2}}}{4}} }}{{{x^2}}} = \sqrt {\frac{1}{{{x^2}}} - \frac{{{a^2}}}{{4{x^4}}}} \)

Ta có: \({y^2} = \frac{1}{{{x^2}}} - \frac{{{a^2}}}{{4{x^4}}} \\=  - {\left( {\frac{a}{2}} \right)^2}.{\left( {\frac{1}{{{x^2}}}} \right)^2} + 2.\frac{a}{2}.\frac{1}{a}.\frac{1}{{{x^2}}} - {\left( {\frac{1}{a}} \right)^2} + {\left( {\frac{1}{a}} \right)^2}\)

\( \Rightarrow {y^2} =  - {\left( {\frac{a}{2}.\frac{1}{{{x^2}}} - \frac{1}{a}} \right)^2} + \frac{1}{{{a^2}}}\)

 

Mà \({\left( {\frac{a}{2}.\frac{1}{{{x^2}}} - \frac{1}{a}} \right)^2} \ge 0 \\\Rightarrow  - {\left( {\frac{a}{2}.\frac{1}{{{x^2}}} - \frac{1}{a}} \right)^2} + \frac{1}{{{a^2}}} \le \frac{1}{{{a^2}}}\)

\( \Rightarrow {\left( {{y^2}} \right)_{\max }} = \frac{1}{{{a^2}}} \Rightarrow {y_{\max }} = \frac{1}{a}\)

Khi \(\frac{a}{2}.\frac{1}{{{x^2}}} - \frac{1}{a} = 0 \Rightarrow \frac{1}{{{x^2}}} = \frac{2}{{{a^2}}}\\ \Rightarrow x = \frac{a}{{\sqrt 2 }} = 5\sqrt 2 \,\,\left( {cm} \right)\)

\( \Rightarrow {B_{\max }} = {2.2.10^{ - 7}}I.{y_{\max }}\\ = {2.2.10^{ - 7}}.I.\sqrt {\frac{1}{{{a^2}}}}  = {4.10^{ - 5}}\,\,\left( T \right)\)

Chọn B.

Copyright © 2021 HOCTAP247