Hệ phương trình sau \(\left\{ \begin{array}{l}2x + 5y = 1\\6x - 15y = 4\end{array} \right.\) có bao nhiêu nghiệm?

Câu hỏi :

Hệ phương trình \(\left\{ \begin{array}{l}2x + 5y = 1\\6x - 15y = 4\end{array} \right.\) có bao nhiêu nghiệm?

A. 0

B. 1

C. 2

D. Vô số

* Đáp án

B

* Hướng dẫn giải

\(\begin{array}{l}\left\{ \begin{array}{l}2x + 5y = 1\\6x - 15y = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{1 - 5y}}{2}\\6.\dfrac{{1 - 5y}}{2} - 15y = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{1 - 5y}}{2}\\3\left( {1 - 5y} \right) - 15y = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{1 - 5y}}{2}\\3 - 15y - 15y = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{1 - 5y}}{2}\\ - 30y = 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = \dfrac{{ - 1}}{{30}}\\x = \dfrac{{1 - 5.\dfrac{{ - 1}}{{30}}}}{2} = \dfrac{{1 + \dfrac{1}{6}}}{2} = \dfrac{7}{{12}}\end{array} \right.\end{array}\)

Vậy hệ phương trình có 1 nghiệm

Copyright © 2021 HOCTAP247