A. 2m/s
B. 0,5m/s
C. 1,5m/s
D. 1m/s
D
Gọi tốc độ đi vào và tốc độ đi ra lần lượt là là x và y (m/s) \(\left( {x;y > 0} \right)\).
Vì tốc độ khi đi vào nhanh hơn tốc độ khi ra là 0,5 m/giây nên \(x - y = 0,5\,\,\,\left( 1 \right)\)
Thời gian lúc đi vào là \(\dfrac{{60}}{x}\,\,\left( s \right)\) và thời gian lúc đi ra là \(\dfrac{{60}}{y}\,\,\left( s \right)\)
Do thời gian lúc chạy vào ngắn hơn lúc đi ra là 20 giây nên
\(\dfrac{{60}}{y} - \dfrac{{60}}{x} = 20 \Leftrightarrow \dfrac{3}{y} - \dfrac{3}{x} = 1\,\,\,\left( 2 \right)\)
Từ (1) và (2) ta có hệ phương trình
\(\begin{array}{l}\left\{ \begin{array}{l}x - y = 0,5\\\dfrac{3}{y} - \dfrac{3}{x} = 1\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}x = y + 0,5\\\dfrac{3}{y} - \dfrac{3}{{y + 0,5}} = 1\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}x = y + 0,5\\3y + 1,5 - 3y = {y^2} + 0,5y\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = y + 0,5\\{y^2} + 0,5y - 1,5 = 0\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}x = y + 0,5\\\left[ \begin{array}{l}y = 1\,\,\left( {tm} \right)\\y = - 1,5\,\,\left( {ktm} \right)\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = 1\\x = 1,5\end{array} \right.\end{array}\)
Vậy tốc độ lúc đi ra là 1m/s.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247