Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 9cm, HC = 16cm

Câu hỏi :

Cho ΔABC vuông tại A, đường cao AH. Biết HB=9cm,HC=16cm.

a) Tính AB,AC,AH

b) Gọi D, E lần lượt là hình chiếu vuông góc của H trên AB, AC. Tứ giác ADHE là hình gì ? Vì sao ?

     c)     Tính chu vi và diện tích cùa tứ giác ADHE.

* Đáp án

* Hướng dẫn giải

Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 9cm, HC = 16cm (ảnh 1)

    a)     Áp dụng hệ thức lượng vào ΔABC vuông tại A, AH đường cao

AH2=BH.HC hay AH2=9.16=144AH=144=12(cm)

Áp dụng định lý Pytago vào các tam giác vuông AHB, AHC có:

AB=AH2+BH2=122+92=15(cm)AC=AH2+HC2=122+162=20(cm)

Vậy AH=12cm,AB=15cm,AC=20cm

     b)    Tứ giác ADHE có A^=D^=E^=900ADHE là hình chữ nhật

      c) ΔAHB vuông tại H, HE là đường cao AD.AB=AH2 (hệ thức lượng)

Hay AD.15=122AD=9,6(cm)

ΔAHC vuông tại H, HE là đường cao nên AE.AC=AH2 (hệ thức lượng)

Hay AE.20=122AE=7,2cm

Chu vi tứ giác ADHE=2.AD+AE=2.9,6+7,2=33,6(cm)

Diện tích tứ giác ADHE =AD.A=9,6.7,2=69,12(cm2)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập theo tuần Toán 9 - Tuần 1 !!

Số câu hỏi: 26

Copyright © 2021 HOCTAP247