Cho một tứ giác ABCD có 2 đường chéo AC, BD vuông góc với nhau. Gọi M, N, R, S lần lượt là trung điểm các cạnh AB, BC, CD, DA. Chứng minh rằng 4 điểm M, N, R, S cùng nằm trên đường tròn.
có S là trung điểm AD, M là trung diểm AB
là đường trung bình
Chứng minh tương tự là hình bình hành (1)
Mà
Từ (1) và (2) suy ra SMNR là hình chữ nhật nên 4 điểm M, N, R, S cùng nằm trên đường tròn
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247